OTB.EndmemberNumberEstimation: Estimate the number of endmembers in a hyperspectral image

Estimate the number of endmembers in a hyperspectral image. First, compute statistics on the image and then apply an endmember number estimation algorithm using these statistics. Two algorithms are available:1. Virtual Dimensionality (HFC-VD) [1][2]2. Eigenvalue Likelihood Maximization (ELM) [3][4]The application then returns the estimated number of endmembers.[1] C.-I. Chang and Q. Du, Estimation of number of spectrally distinct signal sources in hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 3, mar 2004.[2] J. Wang and C.-I. Chang, Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 9, pp. 2601-1616, sep 2006.[3] Unsupervised Endmember Extraction of Martian Hyperspectral Images, B.Luo, J. Chanussot, S. Dout'e and X. Ceamanos, IEEE Whispers 2009, Grenoble France, 2009[4] Unsupervised classification of hyperspectral images by using linear unmixing algorithm Luo, B. and Chanussot, J., IEEE Int. Conf. On ImageProcessing(ICIP) 2009, Cairo, Egypte, 2009

Inputs

The hyperspectral data cube input

format
href
Please set a value for in.

The algorithm to use for the estimation

string
Please set a value for algo.

False alarm rate for the virtual dimensionality algorithm

number
Please set a value for algo.vd.far.

Available memory for processing (in MB).

integer

Outputs

The output estimated number of endmembers

transmission

Execution options

successUri
inProgressUri
failedUri

format

mode

Execute End Point

View the execution endpoint of a process.

View the alternative version in HTML.

{"id": "OTB.EndmemberNumberEstimation", "title": "Estimate the number of endmembers in a hyperspectral image", "description": "Estimate the number of endmembers in a hyperspectral image. First, compute statistics on the image and then apply an endmember number estimation algorithm using these statistics. Two algorithms are available:1. Virtual Dimensionality (HFC-VD) [1][2]2. Eigenvalue Likelihood Maximization (ELM) [3][4]The application then returns the estimated number of endmembers.[1] C.-I. Chang and Q. Du, Estimation of number of spectrally distinct signal sources in hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 3, mar 2004.[2] J. Wang and C.-I. Chang, Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 9, pp. 2601-1616, sep 2006.[3] Unsupervised Endmember Extraction of Martian Hyperspectral Images, B.Luo, J. Chanussot, S. Dout'e and X. Ceamanos, IEEE Whispers 2009, Grenoble France, 2009[4] Unsupervised classification of hyperspectral images by using linear unmixing algorithm Luo, B. and Chanussot, J., IEEE Int. Conf. On ImageProcessing(ICIP) 2009, Cairo, Egypte, 2009", "version": "1.0.0", "jobControlOptions": ["sync-execute", "async-execute", "dismiss"], "outputTransmission": ["value", "reference"], "links": [{"rel": "execute", "type": "application/json", "title": "Execute End Point", "href": "http://tb17.geolabs.fr:8090/ogc-api/processes/OTB.EndmemberNumberEstimation/execution"}, {"rel": "alternate", "type": "text/html", "title": "Execute End Point", "href": "http://tb17.geolabs.fr:8090/ogc-api/processes/OTB.EndmemberNumberEstimation/execution.html"}], "inputs": {"in": {"title": "The hyperspectral data cube input", "description": "The hyperspectral data cube input", "maxOccurs": 1, "extentded-schema": {"oneOf": [{"allOf": [{"$ref": "http://zoo-project.org/dl/link.json"}, {"type": "object", "properties": {"type": {"enum": ["image/tiff", "image/jpeg", "image/png"]}}}]}, {"type": "object", "required": ["value"], "properties": {"value": {"oneOf": [{"type": "string", "contentEncoding": "base64", "contentMediaType": "image/tiff"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/jpeg"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/png"}]}}}]}, "schema": {"oneOf": [{"type": "string", "contentEncoding": "base64", "contentMediaType": "image/tiff"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/jpeg"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/png"}]}, "id": "in"}, "algo": {"title": "The algorithm to use for the estimation", "description": "The algorithm to use for the estimation", "maxOccurs": 1, "schema": {"type": "string", "default": "elm", "enum": ["elm", "vd"]}, "id": "algo"}, "algo.vd.far": {"title": "False alarm rate for the virtual dimensionality algorithm", "description": "False alarm rate for the virtual dimensionality algorithm", "maxOccurs": 1, "schema": {"type": "number", "default": 0.001}, "id": "algo.vd.far"}, "ram": {"title": "Available memory for processing (in MB).", "description": "Available memory for processing (in MB).", "maxOccurs": 1, "schema": {"type": "integer", "default": 256, "nullable": true}, "id": "ram"}}, "outputs": {"number": {"title": "The output estimated number of endmembers", "description": "The output estimated number of endmembers", "schema": {"type": "integer"}, "id": "number"}}}

http://tb17.geolabs.fr:8090/ogc-api/processes/OTB.EndmemberNumberEstimation.html
Last modified: Wed Jun 9 17:39:32 CEST 2021