OTB.EndmemberNumberEstimation: Estimate the number of endmembers in a hyperspectral image
Estimate the number of endmembers in a hyperspectral image. First, compute statistics on the image and then apply an endmember number estimation algorithm using these statistics. Two algorithms are available:1. Virtual Dimensionality (HFC-VD) [1][2]2. Eigenvalue Likelihood Maximization (ELM) [3][4]The application then returns the estimated number of endmembers.[1] C.-I. Chang and Q. Du, Estimation of number of spectrally distinct signal sources in hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 3, mar 2004.[2] J. Wang and C.-I. Chang, Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 9, pp. 2601-1616, sep 2006.[3] Unsupervised Endmember Extraction of Martian Hyperspectral Images, B.Luo, J. Chanussot, S. Dout'e and X. Ceamanos, IEEE Whispers 2009, Grenoble France, 2009[4] Unsupervised classification of hyperspectral images by using linear unmixing algorithm Luo, B. and Chanussot, J., IEEE Int. Conf. On ImageProcessing(ICIP) 2009, Cairo, Egypte, 2009
Execute End Point
View the execution endpoint of a process.
View the alternative version in HTML.
{"id": "OTB.EndmemberNumberEstimation", "title": "Estimate the number of endmembers in a hyperspectral image", "description": "Estimate the number of endmembers in a hyperspectral image. First, compute statistics on the image and then apply an endmember number estimation algorithm using these statistics. Two algorithms are available:1. Virtual Dimensionality (HFC-VD) [1][2]2. Eigenvalue Likelihood Maximization (ELM) [3][4]The application then returns the estimated number of endmembers.[1] C.-I. Chang and Q. Du, Estimation of number of spectrally distinct signal sources in hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 3, mar 2004.[2] J. Wang and C.-I. Chang, Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 9, pp. 2601-1616, sep 2006.[3] Unsupervised Endmember Extraction of Martian Hyperspectral Images, B.Luo, J. Chanussot, S. Dout'e and X. Ceamanos, IEEE Whispers 2009, Grenoble France, 2009[4] Unsupervised classification of hyperspectral images by using linear unmixing algorithm Luo, B. and Chanussot, J., IEEE Int. Conf. On ImageProcessing(ICIP) 2009, Cairo, Egypte, 2009", "version": "1.0.0", "jobControlOptions": ["sync-execute", "async-execute", "dismiss"], "outputTransmission": ["value", "reference"], "links": [{"rel": "execute", "type": "application/json", "title": "Execute End Point", "href": "http://tb17.geolabs.fr:8090/ogc-api/processes/OTB.EndmemberNumberEstimation/execution"}, {"rel": "alternate", "type": "text/html", "title": "Execute End Point", "href": "http://tb17.geolabs.fr:8090/ogc-api/processes/OTB.EndmemberNumberEstimation/execution.html"}], "inputs": {"in": {"title": "The hyperspectral data cube input", "description": "The hyperspectral data cube input", "maxOccurs": 1, "extentded-schema": {"oneOf": [{"allOf": [{"$ref": "http://zoo-project.org/dl/link.json"}, {"type": "object", "properties": {"type": {"enum": ["image/tiff", "image/jpeg", "image/png"]}}}]}, {"type": "object", "required": ["value"], "properties": {"value": {"oneOf": [{"type": "string", "contentEncoding": "base64", "contentMediaType": "image/tiff"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/jpeg"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/png"}]}}}]}, "schema": {"oneOf": [{"type": "string", "contentEncoding": "base64", "contentMediaType": "image/tiff"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/jpeg"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/png"}]}, "id": "in"}, "algo": {"title": "The algorithm to use for the estimation", "description": "The algorithm to use for the estimation", "maxOccurs": 1, "schema": {"type": "string", "default": "elm", "enum": ["elm", "vd"]}, "id": "algo"}, "algo.vd.far": {"title": "False alarm rate for the virtual dimensionality algorithm", "description": "False alarm rate for the virtual dimensionality algorithm", "maxOccurs": 1, "schema": {"type": "number", "default": 0.001}, "id": "algo.vd.far"}, "ram": {"title": "Available memory for processing (in MB).", "description": "Available memory for processing (in MB).", "maxOccurs": 1, "schema": {"type": "integer", "default": 256, "nullable": true}, "id": "ram"}}, "outputs": {"number": {"title": "The output estimated number of endmembers", "description": "The output estimated number of endmembers", "schema": {"type": "integer"}, "id": "number"}}}
http://tb17.geolabs.fr:8090/ogc-api/processes/OTB.EndmemberNumberEstimation.html
Last modified: Wed Jun 9 17:39:32 CEST 2021