SAGA.imagery_opencv.12: Logistic Regression (OpenCV)

Integration of the OpenCV Machine Learning library for Logistic Regression based classification of gridded features. <br/><br/>Optimization algorithms like <i>Batch Gradient Descent</i> and <i>Mini-Batch Gradient Descent</i> are supported in Logistic Regression. It is important that we mention the number of iterations these optimization algorithms have to run. The number of iterations can be thought as number of steps taken and learning rate specifies if it is a long step or a short step. This and previous parameter define how fast we arrive at a possible solution. <br/><br/>In order to compensate for overfitting regularization can be performed. (L1 or L2 norm). <br/><br/>Logistic regression implementation provides a choice of two training methods with <i>Batch Gradient Descent</i> or the <i>Mini-Batch Gradient Descent</i>.

Inputs

Features

format
href
Please set a value for FEATURES.

Normalize

boolean

Use the first three features in list to obtain blue, green, red components for class colour in look-up table.

boolean

Use a model previously stored to file.

format
href
Please set a value for MODEL_LOAD.

Training Areas

format
href
Please set a value for TRAIN_AREAS.

Class Identifier

format
href
Please set a value for TRAIN_CLASS.

For non-polygon type training areas, creates a buffer with a diameter of specified size.

number

Stores model to file to be used for subsequent classifications instead of training areas.

format
href
Please set a value for MODEL_SAVE.

The learning rate determines how fast we approach the solution.

number

Number of Iterations

integer

Regularization

string

Training Method

string

Mini-Batch Size

integer

Outputs

Classification

format
transmission

Execution options

successUri
inProgressUri
failedUri

format

mode

Execute End Point

View the execution endpoint of a process.

View the alternative version in HTML.

{"id": "SAGA.imagery_opencv.12", "title": "Logistic Regression (OpenCV)", "description": "Integration of the OpenCV Machine Learning library for Logistic Regression based classification of gridded features. <br/><br/>Optimization algorithms like <i>Batch Gradient Descent</i> and <i>Mini-Batch Gradient Descent</i> are supported in Logistic Regression. It is important that we mention the number of iterations these optimization algorithms have to run. The number of iterations can be thought as number of steps taken and learning rate specifies if it is a long step or a short step. This and previous parameter define how fast we arrive at a possible solution. <br/><br/>In order to compensate for overfitting regularization can be performed. (L1 or L2 norm). <br/><br/>Logistic regression implementation provides a choice of two training methods with <i>Batch Gradient Descent</i> or the <i>Mini-Batch Gradient Descent</i>. ", "version": "1.0.0", "jobControlOptions": ["sync-execute", "async-execute", "dismiss"], "outputTransmission": ["value", "reference"], "links": [{"rel": "http://www.opengis.net/def/rel/ogc/1.0/execute", "type": "application/json", "title": "Execute End Point", "href": "http://tb17.geolabs.fr:8119/ogc-api/processes/SAGA.imagery_opencv.12/execution"}, {"rel": "alternate", "type": "text/html", "title": "Execute End Point", "href": "http://tb17.geolabs.fr:8119/ogc-api/processes/SAGA.imagery_opencv.12/execution.html"}], "inputs": {"FEATURES": {"title": "Features", "description": "Features", "maxOccurs": 1024, "extended-schema": {"type": "array", "minItems": 1, "maxItems": 1024, "items": {"oneOf": [{"allOf": [{"$ref": "http://zoo-project.org/dl/link.json"}, {"type": "object", "properties": {"type": {"enum": ["image/tiff", "application/x-ogc-envi", "application/x-ogc-aaigrid", "image/png"]}}}]}, {"type": "object", "required": ["value"], "properties": {"value": {"oneOf": [{"type": "string", "contentEncoding": "base64", "contentMediaType": "image/tiff"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "application/x-ogc-envi"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "application/x-ogc-aaigrid"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/png"}]}}}]}}, "schema": {"oneOf": [{"type": "string", "contentEncoding": "base64", "contentMediaType": "image/tiff"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "application/x-ogc-envi"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "application/x-ogc-aaigrid"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/png"}]}, "id": "FEATURES"}, "NORMALIZE": {"title": "Normalize", "description": "Normalize", "schema": {"type": "boolean", "default": false, "enum": ["true", "false"], "nullable": true}, "id": "NORMALIZE"}, "RGB_COLORS": {"title": "Update Colors from Features", "description": "Use the first three features in list to obtain blue, green, red components for class colour in look-up table.", "schema": {"type": "boolean", "default": false, "enum": ["true", "false"], "nullable": true}, "id": "RGB_COLORS"}, "MODEL_LOAD": {"title": "Load Model", "description": "Use a model previously stored to file.", "extended-schema": {"oneOf": [{"allOf": [{"$ref": "http://zoo-project.org/dl/link.json"}, {"type": "object", "properties": {"type": {"enum": ["text/plain"]}}}]}, {"type": "object", "required": ["value"], "properties": {"value": {"oneOf": [{"type": "string", "contentEncoding": "utf-8", "contentMediaType": "text/plain"}]}}}], "nullable": true}, "schema": {"oneOf": [{"type": "string", "contentEncoding": "utf-8", "contentMediaType": "text/plain"}]}, "id": "MODEL_LOAD"}, "TRAIN_AREAS": {"title": "Training Areas", "description": "Training Areas", "extended-schema": {"oneOf": [{"allOf": [{"$ref": "http://zoo-project.org/dl/link.json"}, {"type": "object", "properties": {"type": {"enum": ["text/xml", "application/vnd.google-earth.kml+xml", "application/json"]}}}]}, {"type": "object", "required": ["value"], "properties": {"value": {"oneOf": [{"type": "string", "contentEncoding": "utf-8", "contentMediaType": "text/xml"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "application/vnd.google-earth.kml+xml"}, {"type": "object"}]}}}]}, "schema": {"oneOf": [{"type": "string", "contentEncoding": "utf-8", "contentMediaType": "text/xml"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "application/vnd.google-earth.kml+xml"}, {"type": "object"}]}, "id": "TRAIN_AREAS"}, "TRAIN_CLASS": {"title": "Class Identifier", "description": "Class Identifier", "extended-schema": {"oneOf": [{"allOf": [{"$ref": "http://zoo-project.org/dl/link.json"}, {"type": "object", "properties": {"type": {"enum": ["text/csv", "text/csv"]}}}]}, {"type": "object", "required": ["value"], "properties": {"value": {"oneOf": [{"type": "string", "contentEncoding": "utf-8", "contentMediaType": "text/csv"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "text/csv"}]}}}], "nullable": true}, "schema": {"oneOf": [{"type": "string", "contentEncoding": "utf-8", "contentMediaType": "text/csv"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "text/csv"}]}, "id": "TRAIN_CLASS"}, "TRAIN_BUFFER": {"title": "Buffer Size", "description": "For non-polygon type training areas, creates a buffer with a diameter of specified size.", "schema": {"type": "number", "default": 1, "format": "double", "nullable": true}, "id": "TRAIN_BUFFER"}, "MODEL_SAVE": {"title": "Save Model", "description": "Stores model to file to be used for subsequent classifications instead of training areas.", "extended-schema": {"oneOf": [{"allOf": [{"$ref": "http://zoo-project.org/dl/link.json"}, {"type": "object", "properties": {"type": {"enum": ["text/plain"]}}}]}, {"type": "object", "required": ["value"], "properties": {"value": {"oneOf": [{"type": "string", "contentEncoding": "utf-8", "contentMediaType": "text/plain"}]}}}], "nullable": true}, "schema": {"oneOf": [{"type": "string", "contentEncoding": "utf-8", "contentMediaType": "text/plain"}]}, "id": "MODEL_SAVE"}, "LOGR_LEARNING_RATE": {"title": "Learning Rate", "description": "The learning rate determines how fast we approach the solution.", "schema": {"type": "number", "default": 1, "format": "double", "nullable": true}, "id": "LOGR_LEARNING_RATE"}, "LOGR_ITERATIONS": {"title": "Number of Iterations", "description": "Number of Iterations", "schema": {"type": "integer", "default": 300, "nullable": true}, "id": "LOGR_ITERATIONS"}, "LOGR_REGULARIZATION": {"title": "Regularization", "description": "Regularization", "schema": {"type": "string", "default": "disabled", "enum": ["disabled", "L1 norm", "L2 norm"], "nullable": true}, "id": "LOGR_REGULARIZATION"}, "LOGR_TRAIN_METHOD": {"title": "Training Method", "description": "Training Method", "schema": {"type": "string", "default": "Batch Gradient Descent", "enum": ["Batch Gradient Descent", "Mini-Batch Gradient Descent"], "nullable": true}, "id": "LOGR_TRAIN_METHOD"}, "LOGR_MINIBATCH_SIZE": {"title": "Mini-Batch Size", "description": "Mini-Batch Size", "schema": {"type": "integer", "default": 1, "nullable": true}, "id": "LOGR_MINIBATCH_SIZE"}}, "outputs": {"CLASSES": {"title": "Classification", "description": "Classification", "extended-schema": {"oneOf": [{"allOf": [{"$ref": "http://zoo-project.org/dl/link.json"}, {"type": "object", "properties": {"type": {"enum": ["image/tiff", "application/x-ogc-envi", "application/x-ogc-aaigrid", "image/png"]}}}]}, {"type": "object", "required": ["value"], "properties": {"value": {"oneOf": [{"type": "string", "contentEncoding": "base64", "contentMediaType": "image/tiff"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "application/x-ogc-envi"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "application/x-ogc-aaigrid"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/png"}]}}}]}, "schema": {"oneOf": [{"type": "string", "contentEncoding": "base64", "contentMediaType": "image/tiff"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "application/x-ogc-envi"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "application/x-ogc-aaigrid"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/png"}]}, "id": "CLASSES"}}}

http://tb17.geolabs.fr:8119/ogc-api/processes/SAGA.imagery_opencv.12.html
Last modified: Sat Feb 19 15:43:34 CET 2022